Abstract

We study the problem of optimal leader selection in consensus networks with noisy relative information. The objective is to identify the set of k leaders that minimizes the formation's deviation from the desired trajectory established by the leaders. An optimal leader set can be found by an exhaustive search over all possible leader sets; however, this approach is not scalable to large networks. In recent years, several works have proposed approximation algorithms to the k-leader selection problem, yet the question of whether there exists an efficient, non-combinatorial method to identify the optimal leader set remains open. This work takes a first step towards answering this question. We show that, in one-dimensional weighted graphs, namely path graphs and ring graphs, the k-leader selection problem can be solved in polynomial time (in both k and the network size n). We give an O(n3) solution for optimal k-leader selection in path graphs and an O(kn3) solution for optimal k-leader selection in ring graphs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.