Abstract

AbstractThis study reports on highly efficient nonlinear optical ionic quinolinium crystals with various aromatic anions possessing different spatial volume for controlling the space‐filling characteristics and introducing halogen substituents having simultaneous electron‐withdrawing and electron‐donating effects. The quinolinium crystals with chloro and bromo substituents having simultaneous electron‐withdrawing and electron‐donating effects on anions exhibit perfect molecular ordering for optimizing the diagonal second‐order nonlinear optical response, while the fluoro substituent having relatively small electron‐donating effects on anions results in the absence of nonlinear optical response. Compared to widely used 4‐methylbenzenesulfonate, the chloro substituent on 4‐chlorobenzenesulfonate (CBS) results in decreasing π–π interactions between cations and anions. This leads on the one hand to an enhanced macroscopic nonlinear response and on the other hand to an increased strength of hydrogen bonds between anions, resulting in strong suppression of THz phonon vibration. In THz generation measurements with pump pulses at 1300 nm, 0.39 mm thick 2‐(4‐hydroxystyryl)‐1‐methylquinolinium 4‐chlorobenzenesulfonate (OHQ‐CBS) crystal exhibits excellent optical‐to‐THz conversion characteristics with 27 times higher peak‐to‐peak electric field and 3 times broader bandwidth than the well‐known 1.0 mm thick inorganic standard ZnTe crystal. In addition, compared to state‐of‐the‐art analogous quinolinium crystals with 4‐methylbenzenesulfonate, OHQ‐CBS crystal exhibits 1.8 times higher field.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.