Abstract

AbstractPhotonic integrated circuits (PICs) are notable for their enhanced functionalities with material flexibilities to find applications in wearable high‐speed data management systems. Due to the miniaturized dimensions of PICs, the employment of a nanomaterial having significant optical nonlinearity is critical. Here, it is demonstrated that a polymer waveguide can be harmonized with nonlinear graphene to form ultrashort laser pulses. The graphene works as nonlinear saturable absorber on the polymer waveguide prepared with a perfluorinated acrylic resin. The evanescent field of a laser propagating through the waveguide interacts with graphene to induce intracavity intensity modulation for femtosecond‐scale pulse formation. The laser output is characterized quantitatively as the central wavelength, spectral width, repetition rate, extinction ratio, and pulse duration, which are 1553.32 nm, 10.21 nm, 4.18 MHz, 76.03 dB, and 874 fs, respectively. Stable operation is verified over 3 h.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.