Abstract

The physicochemical properties of Eu-doped zinc gallate (ZnGaxO1+1.5x:Eu) (1 < x < 6) thin films were investigated by means of photoluminescence (PL) triggered by band-to-band transitions of the host crystal at λ = 325 nm. Close correspondence between PL spectra and crystalline phases was verified by performing combinatorial measurements over four-inch substrates on which there was a spread of Ga/Zn composition ratios. The phase formation kinetics for deposition with H2O as an oxygen source gas followed by post annealing were similar to those of hydrothermal synthesis. ZnGa2O4 preferentially formed for a wide range of compositions between 1 < x < 4 and post annealing temperatures between 400 and 800 °C; intense emissions from Eu3+ ions were observed from the films. In contrast, the phase formation kinetics for deposition with O2 gas followed by post annealing were similar to those of solid-state reactions. Vacuum annealing above 500 °C caused preferential losses of Ga atoms and precipitation of Zn2Ga2O5 crystallites at x < 4, whereas ZnGa2O4 formed when a large amount of Ga (x > 6) was initially contained in the as-deposited state. The resulting PL spectra from Zn2Ga2O5 exhibited only a broad emission band from 450 to 700 nm, which was ascribed to defects in the poorly crystallized Zn:Ga = 1:1 phase. When the films deposited with O2 were post annealed in an O2 ambient, Zn atoms were lost, producing β-Ga2O3 as the primary phase accompanied with ZnGa2O4. The resulting Eu3+ emission was very weak, possibly because the Eu3+ ions attached to Ga2O3 domains were not emission-active and/or could not be efficiently excited due to wide bandgap (5 eV). When ZnGa2O4:Eu films were crystallized during deposition at elevated temperatures, weak emissions only from Eu3+ ions were observed. Taken together, these experimental results indicate that Eu3+ ions attached to ZnGa2O4 are highly emission-active; i.e., ZnGa2O4 is a particularly good host crystal with which to secure optical activation of doped Eu3+ ions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.