Abstract

We present open-source implementations of the linear-scaling fast multipole method (FMM) within the polarizable embedding (PE) model for efficient treatment of large polarizable environments in computational spectroscopy simulations. The implementations are tested for accuracy, efficiency, and usability on model systems as well as more realistic biomolecular systems. We explain how FMM parameters affect the calculation of molecular properties and show that PE calculations employing FMM can be carried out in a black-box manner. The efficiency of the linear-scaling approach is demonstrated by simulating the UV/vis spectrum of a chromophore in an environment of more than 1 million polarizable sites. Our implementations are interfaced to several open-source quantum chemistry programs, making computational spectroscopy simulations within the PE model and FMM available to a large variety of methods and a broad user base.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.