Abstract

OpenCL functions as a portability layer for diverse heterogeneous hardware platforms including CPUs, GPUs, FPGAs, and hardware accelerators. However, OpenCL programs utilizing multiple of these devices in the same computing platform suffer from poor coordination between OpenCL implementations of different hardware vendors. This paper proposes a vendor-independent open source method for integrating custom FPGA accelerators into a common OpenCL platform. The accelerators are wrapped in a common hardware interface to enable efficient synchronization and data sharing between devices on the same chip. The provided software connects the accelerator to OpenCL runtime and enables the control of diverse FPGA accelerators with OpenCL command queues.The benefits of the integration methodology are demonstrated by creating FPGA accelerators with different development tools and integrating them together on two different types of FPGA devices while showing minimal integration overhead. Direct memory access of the accelerator to external memory is shown to increase the performance by a factor of 8. Non-blocking execution enabled by the on-chip synchronization between devices is shown to remove a 250 μs overhead from dependent kernel launches. Additionally, as a proof of concept and a case study, a fully OpenCL-controllable computing platform with two devices is implemented on an FPGA to compute CNN inference on a real-world input signal.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.