Abstract
This work reports a simple and scalable strategy to prepare a series of thermoresponsive polyurethanes synthesized via copolymerization of dicyclohexyl diisocyanate with glycerol ethoxylate in a single one-pot system. These polyurethanes exhibit lower critical solution temperatures (LCST) at 57 °C. The LCST of synthesized polyurethane was determined from Dynamic Scanning Calorimetry and UV-vis measurements. Both the LCST and Tg of synthesized polyurethane was tuned by varying the ratio between hard segment (dicyclohexyl diisocyanate) and soft segment (glycerol ethoxylate). Thus, Tg values could be tuned from -54.6 °C to -19.9 °C for samples with different flexibility. The swelling and deswelling studies were done at room temperature and above the LCST respectively. The results showed that the swelling ratio increases with the increase of soft segment (glycerol ethoxylate) in synthesized polyurethanes. Furthermore, the mechanical properties of the membrane were studied by universal tensile testing measurements. Specifically, stress at break values varied from 0.35±0.07 MPa to 0.91±0.15 MPa for the tested membranes, whereas elongation at break data ranged from 101.9±20.9 % to 192.4±24.4 %, and Young's modulus varied from 0.35±0.03 MPa to 1.85±0.19 MPa. Tensile strength of the films increased with the increase of the hard segment and elongation at break decreased.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.