Abstract
An efficient one-pot dehydration process for convert D-glucosamine hydrochloride (GlcNH2) into 2-(D-arabino-1′,2′,3′,4′-tetrahydroxybutyl)-5-(D-erythro-2′′,3′′,4′′-trihydroxybutyl)pyrazine (deoxyfructosazine, DOF) and 2,5-bis-(D-arabino-1,2,3,4-tetrahydroxybutyl)pyrazine (fructosazine, FZ) was reported. A task-specific basic ionic liquid, 1-butyl-3-methylimidazolium hydroxide ([BMIM]OH), was employed as an environmentally-friendly solvent and catalyst. The products were qualitatively and quantitatively characterized by MALDI-TOF-MS, 1H NMR and 13C NMR spectroscopy. The influences of GlcNH2 concentrations, reaction temperature, reaction time, additives and co-solvents on the yields of products were studied. The maximum yield of 49% was obtained in the presence of [BMIM]OH and DMSO under optimized conditions (120 °C, 180 min). In addition, a plausible mechanism was proposed. Our project was to develop efficient, atom economical and eco-compatible routes for the synthesis of heterocyclic compounds from marine biomass (or nitrogen-containing biomass). The obtained aromatic heterocyclic compounds showed potential pharmacological action and physiological effects, and they also could be utilized as flavoring agents in the food industry.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.