Abstract
Multi-view subspace clustering (MVSC) optimally integrates multiple graph structure information to improve clustering performance. Recently, many anchor-based variants are proposed to reduce the computational complexity of MVSC. Though achieving considerable acceleration, we observe that most of them adopt fixed anchor points separating from the subsequential anchor graph construction, which may adversely affect the clustering performance. In addition, post-processing is required to generate discrete clustering labels with additional time consumption. To address these issues, we propose a scalable and parameter-free MVSC method to directly output the clustering labels with optimal anchor graph, termed as Efficient One-pass Multi-view Subspace Clustering with Consensus Anchors (EOMSC-CA). Specially, we combine anchor learning and graph construction into a uniform framework to boost clustering performance. Meanwhile, by imposing a graph connectivity constraint, our algorithm directly outputs the clustering labels without any post-processing procedures as previous methods do. Our proposed EOMSC-CA is proven to be linear complexity respecting to the data size. The superiority of our EOMSC-CA over the effectiveness and efficiency is demonstrated by extensive experiments. Our code is publicly available at https://github.com/Tracesource/EOMSC-CA.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Proceedings of the AAAI Conference on Artificial Intelligence
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.