Abstract

This paper presents an efficient blind symbol timing estimation scheme for orthogonal frequency-division multiplexing (OFDM) systems with constant modulus constellation. The proposed technique is designed to estimate symbol timing offsets by minimizing the power difference between subcarriers with similar indices over two consecutive OFDM symbols based on the assumption that the channel slowly changes over time. The proposed power difference estimator (PDE) is totally blind because it requires no prior information about the channel or the transmitted data. Monte Carlo simulation is used to assess the PDE performance in terms of the probability of correct timing estimate Plock-in. Moreover, we propose a new performance metric denoted as the deviation from safe region (DSR). Simulation results have demonstrated that the PDE performs well in severe frequency-selective fading channels and outperforms the other considered estimators. The complexity of the PDE can be significantly reduced by incorporating a low-cost estimator to provide initial coarse timing information. The proposed PDE is realized using feedforward and early-late gate (ELG) configurations. The new PDE-ELG does not suffer from the self-noise problem inherent in other ELG estimators reported in the literature.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.