Abstract

Obstacle detection is an essential task for the autonomous navigation by robots. The task becomes more complex in a dynamic and cluttered environment. In this context, the RGB-D camera sensor is one of the most common devices that provides a quick and reasonable estimation of the environment in the form of RGB and depth images. This work proposes an efficient obstacle detection and tracking method using depth images to facilitate quick dynamic obstacle detection. To achieve early detection of dynamic obstacles and stable estimation of their states, as in previous methods, we applied a u-depth map for obstacle detection. Unlike existing methods, the present method provides dynamic thresholding facilities on the u-depth map to detect obstacles more accurately. Here, we propose a restricted v-depth map technique, using post-processing after the u-depth map processing to obtain a better prediction of the obstacle dimension. We also propose a new algorithm to track obstacles until they are within the field of view (FOV). We evaluate the performance of the proposed system on different kinds of data sets. The proposed method outperformed the vision-based state-of-the-art (SoA) methods in terms of state estimation of dynamic obstacles and execution time.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.