Abstract
AbstractTwo efficient numerical methods for dealing with the stability of linear periodic systems are presented. Both methods combine the use of multivariable Floquet–Liapunov theory with an efficient numerical scheme for computing the transition matrix at the end of one period. The numerical properties of these methods are illustrated by applying them to the simple parametric excitation problem of a fixed end column. The practical value of these methods is shown by applying them to some helicopter rotor blade aeroelastic and structural dynamics problems. It is concluded that these methods are numerically efficient, general and practical for dealing with the stability of large periodic systems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal for Numerical Methods in Engineering
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.