Abstract
Abstract Partially ionized plasmas, such as the solar chromosphere, require a generalized Ohm’s law including the effects of ambipolar and Hall drift. While both describe transport processes that arise from the multifluid equations and are therefore of hyperbolic nature, they are often incorporated in models as a diffusive, i.e., parabolic process. While the formulation as such is easy to include in standard MHD models, the resulting diffusive time-step constraints do require often a computationally more expensive implicit treatment or super-time-stepping approaches. In this paper we discuss an implementation that retains the hyperbolic nature and allows for an explicit integration with small computational overhead. In the case of ambipolar drift, this formulation arises naturally by simply retaining a time derivative of the drift velocity that is typically omitted. This alone leads to time-step constraints that are comparable to the native MHD time-step constraint for a solar setup including the region from photosphere to lower solar corona. We discuss an accelerated treatment that can further reduce time-step constraints if necessary. In the case of Hall drift we propose a hyperbolic formulation that is numerically similar to that for the ambipolar drift and we show that the combination of both can be applied to simulations of the solar chromosphere at minimal computational expense.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.