Abstract

AbstractThis article is concerned with the finite element implementation of an elasto‐visco‐plastic constitutive model using a symbolic approach. The model combines the Knauss–Emri (KE) pressure, temperature, and time superposition principle in the implicit finite element scheme. The equation development and code generation was performed using the symbolic tool AceGen. The same symbolic system was applied to derive analytical sensitivities of the numerical model with respect to the material and shape parameters. To enable efficient numerical implementation of the KE model the convolution integrals were transformed into their respective incremental forms, so that radical improvements of code efficiency and computer storage requirements were achieved. The numerical examples derived for polyethylene terephthalate (PET) polymers demonstrate that symbolic systems can be applied to develop complex constitutive models capable of simulating material responses that are in good agreement with experimental measurements over a wide range of strain rates, temperatures, and loading conditions. Copyright © 2010 John Wiley & Sons, Ltd.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.