Abstract

Small-molecule semiconductors used as the channel of organic electrochemical transistors (OECTs) have been rarely reported despite their inherent advantages of well-defined molecular weight, convenient scale-up synthesis, and good performance reproducibility. Herein, three small molecules based on perylene diimides are readily prepared for n-type OECTs. The final molecules show preferred energy levels, tunable backbone conformation, and high film crystallinity, rendering them good n-type dopability, favorable volumetric capacities, and substantial electron mobilities. Consequently, the OECTs afford a record-low threshold voltage of 0.05 V and a normalized peak transconductance of 4.52 × 10-2 S cm-1, as well as impressive long-term cycling stability. Significantly, the OECTs utilized for hydrogen peroxide sensing are further demonstrated with a detection limit of 0.75 μM. This work opens the possibility of developing nonfullerene small molecules as superior n-type OECT materials and provides important insights for designing high-performance small-molecule mixed ion-electron conductors for OECTs and (bio)sensors.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.