Abstract

In this paper we propose an efficient normalized cross correlation (NCC) algorithm for pattern matching based on adaptive multilevel successive elimination. This successive elimination scheme is applied in conjunction with an upper bound for the cross correlation derived from Cauchy-Schwarz inequality. To apply the successive elimination, we partition the summation of cross correlation into different levels with the partition order determined by the gradient energies of the partitioned regions in the template. Thus, this adaptive multi-level successive elimination scheme can be employed to early reject most candidates to reduce the computational cost. Experimental results show the proposed algorithm is very efficient for pattern matching under different lighting conditions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.