Abstract

A compound Poisson process whose parameters are all unknown is observed at finitely many equispaced times. Nonparametric estimators of the jump and L\'evy distributions are proposed and functional central limit theorems using the uniform norm are proved for both under mild conditions. The limiting Gaussian processes are identified and efficiency of the estimators is established. Kernel estimators for the mass function, the intensity and the drift are also proposed, their asymptotic properties including efficiency are analysed, and joint asymptotic normality is shown. Inference tools such as confidence regions and tests are briefly discussed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.