Abstract

The objective of this work is to demonstrate a computationally efficient, high-fidelity, integrated static aeroelastic analysis procedure. The aerodynamic analysis consists of solving the nonlinear Euler equations by using an upwind cell-centered finite-volume scheme on unstructured tetrahedral meshes. The use of unstructured grids enhances the discretization of irregularly shaped domains and the interaction compatibility with the wing structure. The structural analysis utilizes finite elements to model the wing so that accurate structural deflections are obtained and allows the capability for computing detailed stress information for the configuration. Parameters are introduced to control the interaction of the computational fluid dynamics and structural analyses; these control parameters permit extremely efficient static aeroelastic computations. To demonstrate and evaluate this procedure, static aeroelastic analysis results for a flexible wing in low subsonic, high subsonic (subcritical), transonic (supercritical), and supersonic flow conditions are presented.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call