Abstract

A counterpropagating quasi-phase-matched configuration is examined that is capable of efficiently producing second-order cascaded nonlinear phase shifts with minimal power lost to the second harmonic. For all-optical switching in a nonlinear Mach-Zehnder interferometer, the calculated minimum input power needed for switching (i.e., to yield a +/-pi/2 phase shift) is 40 times smaller than the power needed in the standard typeI copropagating configuration. The throughput of this counterpropagating device is 96% at the optimum switching point.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.