Abstract

In this work we study a novel adaptive nonlinear filtering applied to the Leray-α model. Unlike its classical counterpart, the new filtering requires the solution of a linear elliptic problem, with constant coefficients, at each time step. The action of the adaptive nonlinear filter throughout the integration time is refactorized as the solution of a linear system, with the same matrix and multiple right hand-sides. We discuss the theoretical properties of the new filtering approach applied to the BDF2 approximation of the Leray-α model. Theoretical results and numerical tests demonstrate that the linear system arising from spatial discretization is well-conditioned and the accuracy of the filter is comparable with the classical one. Some benchmark results are also presented.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.