Abstract

AbstractWe propose a non-interactive zero knowledge pairwise multiset sum equality test (PMSET) argument of knowledge in the common reference string (CRS) model that allows a prover to show that the given committed multisets \(\mathbb {A}_j\) for \(j \in \left\{ 1, 2, 3, 4\right\} \) satisfy \(\mathbb {A}_1 \uplus \mathbb {A}_2 = \mathbb {A}_3 \uplus \mathbb {A}_4\), i.e., every element is contained in \(\mathbb {A}_1\) and \(\mathbb {A}_2\) exactly as many times as in \(\mathbb {A}_3\) and \(\mathbb {A}_4\). As a corollary to the \(\mathrm{PMSET}\) argument, we present arguments that enable to efficiently verify the correctness of various (multi)set operations, for example, that one committed set is the intersection or union of two other committed sets. The new arguments have constant communication and verification complexity (in group elements and group operations, respectively), whereas the CRS length and the prover’s computational complexity are both proportional to the cardinality of the (multi)sets. We show that one can shorten the CRS length at the cost of a small increase of the communication and the verifier’s computation.KeywordsMultisetsNon-interactive zero knowledgeSet operation arguments

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.