Abstract

A general matrix pencil based approach is developed for efficient non-conservative realization of dual dynamic high-gain scaling based control designs. A general class of uncertain feedforward-like nonlinear systems is considered and it is shown that the output-feedback control design procedure can be cast into a set of matrix pencil based sub-problems that capture the detailed system structure, state dependence structure of uncertain terms, and the precise roles of the design freedoms in the context of the detailed structure of the Lyapunov inequalities. The design freedoms in the dynamic high-gain scaling based design are extracted in terms of generalized eigenvalues of the formulated matrix pencil structures. It is seen that the proposed matrix pencil based approach greatly reduces design conservatism and algebraic complexity compared to prior results on dynamic high-gain scaling based control designs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.