Abstract
High concentrations of nitrate can be generated during anaerobic ammonium oxidation (Anammox) wastewater treatment processes. Addition of sulfur to Anammox reactors stimulates the growth of sulfur-driven denitrifying (SADN) bacteria that can reduce nitrate to nitrogen gas. However, protons released during the SADN process lower the pH of the system and inhibit Anammox activity. The system will keep stable when pH is in the range of 7.5–8.5. This study showed that addition of siderite stabilized the reactor system and significantly improved the nitrogen removal process. In fact, even when concentrations of total nitrogen were 477.15 ± 16.84 mg/L, the sulfur/siderite reactor maintained nitrogen removal efficiencies >90%, while efficiencies in the sulfur reactor were < 80%. Anammox accounted for 31% of the bacterial sequences in the sulfur/siderite reactor compared to only 14% in the sulfur reactor with the majority of sequences clustering with Ca. Brocadia. An abundance of c-type cytochromes in anammox aggregates in the sulfur-siderite reactor also indicated that anammox activity was higher in this system.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.