Abstract

Tumor necrosis factor alpha (TNFalpha) is among the most prominent cytokines in rheumatoid arthritis (RA) and is secreted mainly by macrophages. A direct method for restoring the immunologic balance in RA is use of small interfering RNA (siRNA) for silencing the TNFalpha transcript. The aim of this study was to determine the therapeutic effect of systemic administration of TNFalpha siRNA in an experimental model of RA, optimizing its delivery using new liposome formulations. Murine macrophages were transfected with siRNA targeting TNFalpha, and expression was measured. The therapeutic effect in collagen-induced arthritis (CIA) was assessed after intravenous delivery of TNFalpha siRNA. Delivery was optimized using a carrier DNA for complexation with the cationic liposome RPR209120/DOPE. Levels of TNFalpha and other cytokines were measured in sera and joint tissue-conditioned media. Biodistribution was determined using a fluorescent siRNA. In vitro, TNFalpha siRNA efficiently and specifically modulated the expression of TNFalpha at both the messenger RNA and protein levels. In vivo, complete cure of CIA was observed when TNFalpha siRNA was administered weekly, complexed with the liposome and combined with carrier DNA. Inhibition (50-70%) of articular and systemic TNFalpha secretion was detected in the siRNA-injected groups, which correlated with a decrease in the levels of interleukin-6 and monocyte chemotactic protein 1. The main organs targeted by siRNA were the liver and spleen; the addition of liposome RPR209120 and carrier DNA significantly increased organ uptake. We demonstrated the efficiency of systemic delivery of siRNA designed to silence TNFalpha in CIA, using a liposome carrier system as a way to address the methodologic limitations in vivo.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.