Abstract
This paper addresses the problem of providing per-connection end-to-end delay guarantees in a high-speed network. We consider a network comprised of store-and-forward packet switches, in which a packet scheduler is available at each output link. We assume that the network is connection oriented and enforces some admission control which ensures that the source traffic conforms to specified traffic characteristics. We concentrate on the class of rate-controlled service (RCS) disciplines, in which traffic from each connection is reshaped at every hop, and develop end-to-end delay bounds for the general case where different reshapers are used at each hop. In addition, we establish that these bounds can also be achieved when the shapers at each hop have the same minimal envelope. The main disadvantage of this class of service discipline is that the end-to-end delay guarantees are obtained as the sum of the worst-case delays at each node, but we show that this problem can be alleviated through proper reshaping of the traffic. We illustrate the impact of this reshaping by demonstrating its use in designing RCS disciplines that outperform service disciplines that are based on generalized processor sharing (GPS). Furthermore, we show that we can restrict the space of good shapers to a family which is characterized by only one parameter. We also describe extensions to the service discipline that make it work conserving and as a result reduce the average end-to-end delays.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.