Abstract

In a two-level nested simulation, an outer level of simulation samples scenarios, while the inner level uses simulation to estimate a conditional expectation given the scenario. Applications include financial risk management, assessing the effects of simulation input uncertainty, and computing the expected value of gathering more information in decision theory. We show that an ANOVA-like estimator of the variance of the conditional expectation is unbiased under mild conditions, and we discuss the optimal number of inner-level samples to minimize this estimator's variance given a fixed computational budget. We show that as the computational budget increases, the optimal number of inner-level samples remains bounded. This finding contrasts with previous work on two-level simulation problems in which the inner- and outer-level sample sizes must both grow without bound for the estimation error to approach zero. The finding implies that the variance of a conditional expectation can be estimated to arbitrarily high precision by a simulation experiment with a fixed inner-level computational effort per scenario, which we call a one-and-a-half-level simulation. Because the optimal number of inner-level samples is often quite small, a one-and-a-half-level simulation can avoid the heavy computational burden typically associated with two-level simulation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.