Abstract

All-inorganic lead-free perovskite-derivative metal halides have shown great promise in optoelectronics, however, it remains challenging to realize efficient near-infrared (NIR) luminescence in these materials. Herein, we report a novel strategy based on Te4+ /Ln3+ (Ln=Er, Nd, and Yb) co-doping to achieve efficient NIR luminescence in vacancy-ordered double perovskite Cs2 ZrCl6 phosphors, which are excitable by a low-cost near-ultraviolet light-emitting diode (LED) chip. Through sensitization by the spin-orbital allowed 1 S0 →3 P1 transition of Te4+ , intense and multi-wavelength NIR luminescence originating from the 4f→4f transitions of Er3+ , Nd3+ , and Yb3+ was acquired, with a quantum yield of 6.1 % for the Er3+ emission. These findings provide a general approach to achieve efficient NIR emission in lead-free metal halides through ns2 -metal and lanthanide ion co-doping, thereby opening up a new avenue for exploring NIR-emitting perovskite derivatives towards versatile applications such as NIR-LEDs and bioimaging.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call