Abstract

ABSTRACT Reconfigurable intelligent surfaces (RISs) are anticipated to constitute a critical component of forthcoming communication networks due to their ability to establish controllable wireless environments. Furthermore, RIS can be leveraged to solve infeasible localization problems. This paper presents a novel adoption of the geometric dilution of precision (GDoP) analysis in the design of non-line of sight (NLoS) single anchor millimetre wave (mmWave) large RIS-aided localization in the near-field. Considering downlink transmission, the time difference of arrival (TDoA) is used to estimate the positioning by extracting the signal contribution of each RIS tile. Considering the enriched time of arrival (ToA) measurements provided by RIS, the RIS tiles involved in TDoA-based estimation should be selected properly. Therefore, the GDoP adopted in this context is to select RIS tile combinations that achieve minimum GDoP values. It has been shown via numerical simulation that the proposed design of the RIS-aided localization outperforms other state-of-the-art techniques that adopt the signal-to-noise ratio (SNR) for the selection of the RIS tiles. It is demonstrated that the proposed scheme can provide sufficient localization accuracy involving only 10% of RIS tiles, whereas the SNR method requires about (70–80) % of the tiles to approximately achieve the same accuracy.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.