Abstract

Abstract Laser action on C3 Π u → B3 Π g transition of nitrogen pumped by a runaway electron preionized discharge (REP DD) was investigated. Emission parameters of diffuse discharge formed by runaway electrons in gaps between long blade electrodes are studied. It was shown that sufficient uniformity of REP DD allows its application as an efficient pumping source of gas lasers. Model of nitrogen laser on N2 – SF6 mixture pumped by nanosecond diffuse discharge was developed. Results of calculations were close to experimental ones and predicted two laser operation modes. In mixture of SF6 – N2 electrical efficiency of 0.2% was obtained. Ultimate laser efficiency of 0.23% was achieved in triple mixtures He–N 2 – SF6. Lasing on N2 molecules with 2 or 3 peaks in successive discharge current oscillations was obtained for the first time in N2 – SF6 – (He) mixture. It was shown that addition of helium to the mixture allows to change energy and spectral distribution on separate laser peaks. Promising prospects of REP DD employment for pumping nitrogen gas lasers was demonstrated which suggest that diffuse discharge can be efficient for pumping a wide range of gas lasers operating on gas mixtures with electro-negative gases, for example, excimer and non-chain chemical lasers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.