Abstract

n-GaAs films were grown epitaxially on n(+)-GaAs substrates by a close-spaced vapor transport method and their photoelectrochemical energy conversion properties studied. Under 100 mW cm(-2) of ELH solar simulation, conversion efficiencies up to 9.3% for CSVT n-GaAs photoanodes were measured in an unoptimized ferrocene/ferrocenium test cell. This value was significantly higher than the 5.7% measured for similarly doped commercial n-GaAs wafers. Spectral response experiments showed that the higher performance of CSVT n-GaAs films relative to the commercial wafers was due to longer minority carrier diffusion lengths (L(D)), up to 1,020 nm in the CSVT films compared to 260 nm in the commercial n-GaAs wafers. Routes to improve the performance of CSVT GaAs and the implications of these results for the development of scalable GaAs-based solar energy conversion devices are discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.