Abstract
Doping of polymeric semiconductors limits the miscibility between polymers and dopants. Although significant efforts have been devoted to enhancing miscibility through chemical modification, the electrical conductivities of n-doped polymeric semiconductors are usually below 10 S cm-1 . We report a different approach to overcome the miscibility issue by modulating the solution-state aggregates of conjugated polymers. We found that the solution-state aggregates of conjugated polymers not only changed with solvent and temperature but also changed with solution aging time. Modulating the solution-state polymer aggregates can directly influence their solid-state microstructures and miscibility with dopants. As a result, both high doping efficiency and high charge-carrier mobility were simultaneously obtained. The n-doped electrical conductivity of P(PzDPP-CT2) can be tuned up to 32.1 S cm-1 . This method can also be used to improve the doping efficiency of other polymer systems (e.g. N2200) with different aggregation tendencies and behaviors.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.