Abstract
Garnet-type Li7La3Zr2O12 (LLZO) is a promising solid-state electrolyte (SSE) due to its high Li+ conductivity and stability against lithium metal. However, wide research and application of LLZO are hampered by the difficulty in sintering highly conductive LLZO ceramics, which is mainly attributed to its poor sinterability and the hardship of controlling the Li2O atmosphere at a high sintering temperature (∼1200 °C). Herein, an efficient mutual-compensating Li-loss (MCLL) method is proposed to effectively control the Li2O atmosphere during the sintering process for highly conductive LLZO ceramics. The Li6.5La3Zr1.5Ta0.5O12 (LLZTO) ceramic SSEs sintered by the MCLL method own high relative density (96%), high Li content (5.54%), high conductivity (7.19 × 10-4 S cm-1), and large critical current density (0.85 mA cm-2), equating those sintered by a hot-pressing technique. The assembled Li-Li symmetric battery and a Li-metal solid-state battery (LMSSB) show that the as-prepared LLZTO can achieve a small interfacial resistance (17 Ω cm2) with Li metal, exhibits high electrochemical stability against Li metal, and has broad potential in the application of LMSSBs. In addition, this method can also improve the sintering efficiency, avoid the use of mother powder, and reduce raw-material cost, and thus it may promote the large-scale preparation and wide application of LLZO ceramic SSE.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.