Abstract

AbstractA multiscale structural design was innovatively adopted herein to increase the toughness of monolithic HfB2 ceramics. SiC whiskers (SiCw) and graphene oxide (GO) were used as fillers for the HfB2 matrix, whereas a ductile W foil was introduced as an interlayer to synthesize laminated HfB2‐SiCw‐rGO/W ceramics. Monolithic HfB2‐SiCp (particulate) and laminated HfB2‐SiCp/W ceramics were prepared using the same routes and used as controls. Following tape casting and spark plasma sintering at 1800°C, the toughness of the prepared laminated HfB2‐SiCw‐rGO/W samples was increased to 14.2 ± 0.6 MPa·m1/2, with minimal sacrifice in flexural strength (421 ± 16 MPa). Morphological analysis of the fracture surface revealed the synergistic effects of micro‐toughening (including bridging and pullout of whiskers and rGO) and macro‐toughening (including crack deflection, bifurcation, and delamination) mechanisms responsible for improving the fracture toughness of the laminated HfB2‐SiCw‐rGO/W composites.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.