Abstract

A novel Monte Carlo simulation scheme based on biased simultaneous displacements of all particles of the system has been developed. The method is particularly suited for systems with nonadditive interactions and its efficiency is demonstrated by its implementation for the polarizable Stockmayer fluid. Performance of the method is compared with both the standard one-particle move method and an unbiased multiparticle scheme by computing the mean squared displacements, rotation relaxation, and the speed of equilibration (translational order parameter). It is shown that the proposed biased method is about a factor of 10 faster, for the system considered, when compared with the other schemes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.