Abstract

An approach for the aerodynamic optimization design of elastic configuration is implemented and tested. Aeroelastic analysis was carried out by coupling Euler equations solver and finite-element structural solver. Two important techniques used in high-fidelity aerostructural design optimization are discussed, which are the grid deformation method and the update method of finite-element mesh (FEM). An improved grid deformation methodology based on transfinite interpolation (TFI) and radial basis function (RBF) method is presented, which adapts to complex configuration very well. The technique to update the FEM is based on bilinear interpolation method and RBF method, and it adapts to any grid type of finite-element model. Discrete adjoint method is used to get the gradient of objective function with respect to design variables. Optimizations of a wing and a more realistic wing-body configuration are done to demonstrate the effectiveness of the proposed approach. Results show that the lift to drag ratio can be improved with constraints through optimization, which indicates that the present methodology can be successfully applied to the optimization design of transonic jig shape of aircraft.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.