Abstract

Controlling the time-domain oscillation of a terahertz (THz) wave offers promising capabilities for THz-based all-optical particle acceleration and strong-field THz nonlinear physics. However, the lack of highly efficient and frequency-modulable multicycle THz sources is impeding the spread of strong-field THz science and applications. Here, we show that by simply adding an echelon into a single-cycle THz source based on optical rectification in lithium niobate crystals via the tilted pulse-front technique, multicycle THz pulses can be efficiently generated with an 800 nm-to-THz efficiency of 0.1% at room temperature. The radiated THz properties can be engineered by precisely designing the echelon structure. Our proposed multicycle THz generation method has the advantages of high efficiency, ease of operation, and quick switching between single-cycle and multicycle working modes, all of which are important in the application of high-field THz radiation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call