Abstract
In this paper we design and implement an algorithm for finding the biconnected components of a given graph. Our algorithm is based on experimental evidence that finding the bridges of a graph is usually easier and faster in the parallel setting. We use this property to first decompose the graph into independent and maximal 2-edge-connected subgraphs. To identify the articulation points in these 2-edge connected subgraphs, we again convert this into a problem of finding the bridges on an auxiliary graph. It is interesting to note that during the conversion process, the size of the graph may increase. However, we show that this small increase in size and the run time is offset by the consideration that finding bridges is easier in a parallel setting. We implement our algorithm on an Intel i7 980X CPU running 12 threads. We show that our algorithm is on average 2.45x faster than the best known current algorithms implemented on the same platform. Finally, we extend our approach to dense graphs by applying the sparsification technique suggested by Cong and Bader in [7].Â
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.