Abstract

For the past decade, HENP experiments have been heading towards a distributed computing model in an effort to concurrently process tasks over enormous data sets that have been increasing in size as a function of time. In order to optimize all available resources (geographically spread) and minimize the processing time, it is necessary to face also the question of efficient data transfers and placements. A key question is whether the time penalty for moving the data to the computational resources is worth the presumed gain. Onward to the truly distributed task scheduling we present the technique using a Constraint Programming (CP) approach. The CP technique schedules data transfers from multiple resources considering all available paths of diverse characteristic (capacity, sharing and storage) having minimum user's waiting time as an objective. We introduce a model for planning data transfers to a single destination (data transfer) as well as its extension for an optimal data set spreading strategy (data placement). Several enhancements for a solver of the CP model will be shown, leading to a faster schedule computation time using symmetry breaking, branch cutting, well studied principles from job-shop scheduling field and several heuristics. Finally, we will present the design and implementation of a corner-stone application aimed at moving datasets according to the schedule. Results will include comparison of performance and trade-off between CP techniques and a Peer-2-Peer model from simulation framework as well as the real case scenario taken from a practical usage of a CP scheduler.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.