Abstract

In this paper, we propose two novel multi-dimensional tensor sparse coding (MDTSC) schemes using the t-linear combination. Based on the t-linear combination, the shifted versions of the bases are used for the data approximation, but without need to store them. Therefore, the dictionaries of the proposed schemes are more concise and the coefficients have richer physical explanations. Moreover, we propose an efficient alternating minimization algorithm, including the tensor coefficient learning and the tensor dictionary learning, to solve the proposed problems. For the tensor coefficient learning, we design a tensor-based fast iterative shrinkage algorithm. For the tensor dictionary learning, we first divide the problem into several nearly-independent subproblems in the frequency domain, and then utilize the Lagrange dual to further reduce the number of optimization variables. Experimental results on multi-dimensional signals denoising and reconstruction (3DTSC, 4DTSC, 5DTSC) show that the proposed algorithms are more efficient and outperform the state-of-the-art tensor-based sparse coding models.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.