Abstract

The ability to plan their own motions and to reliably execute them is an important precondition for autonomous robots. In this paper, we consider the problem of planning the motion of a mobile manipulation robot in the presence of deformable objects. Our approach combines probabilistic roadmap planning with a physical deformation simulation system. Since the physical deformation simulation is computationally demanding, we use efficient Gaussian process regression to estimate the deformation cost for individual objects based on training examples. We generate the training data by employing a simulation system in a preprocessing step. Consequently, no simulations are needed during runtime. We implemented and tested our approach on a mobile manipulation robot. Our experiments show that the robot is able to accurately predict and thus consider the deformation cost its manipulator introduces to the environment during motion planning. Simultaneously, the computation time is substantially reduced compared to a system that employs physical simulations online.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call