Abstract

ABSTRACT High performance computing (HPC) electromagnetic (EM) emulators are used to simulate real-time EM wave interactions between numerous radar targets. Radar Cross Section (RCS) data stores reflection profiles of radar targets as a table; however, the needed storage size increases with frequency sampling density, aspect angle sampling density, and number of target types. The large quantity of data often exceeds storage capability and limits manipulation and representation feasibility. The spherical harmonic based monostatic anisotropic point scatterer model is proposed for HPC EM simulations where scattering responses can be computed with finite impulse response (FIR) filters. An efficient algorithm constructing this model with large scale RCS data is discussed. The scatterer position and the reflection profile of each scatterer are solved using least squares methods and particle swarm optimization (PSO). In addition, the function evaluations in PSO are accelerated by taking advantage of the matrix structure, making the algorithm 22 times faster

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call