Abstract

Based on the energy transfer model (ETM) proposed by Bao et al. and the Monte Carlo (MC) model proposed by Hutcherson and Ye, this paper proposes an efficient molecular model (MC-S) for squeeze-film damping (SQFD) in rarefied air by releasing the assumption of constant molecular velocity in the gap. Compared with the experiment data, the MC-S model is more efficient than the MC model and more accurate than ETM. Besides, by using the MC-S model, the feasibility of the empirical model proposed by Sumali for SQFD of different plate sizes is discussed. It is proved that, for various plate sizes, the accuracy of the empirical model is relatively high. At last, the SQFD of various vibration frequencies is discussed, and it shows that, for low vibration frequency, the MC-S model is reduced to ETM.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.