Abstract
Conformation generation, also known as molecular unfolding (MU), is a crucial step in structure-based drug design, remaining a challenging combinatorial optimization problem. Quantum annealing (QA) has shown great potential for solving certain combinatorial optimization problems over traditional classical methods such as simulated annealing (SA). However, a recent study showed that a 2000-qubit QA hardware was still unable to outperform SA for the MU problem. Here, we propose the use of quantum-inspired algorithm to solve the MU problem, in order to go beyond traditional SA. We introduce a highly compact phase encoding method which can exponentially reduce the representation space, compared with the previous one-hot encoding method. For benchmarking, we tested this new approach on the public QM9 dataset generated by density functional theory (DFT). The root-mean-square deviation between the conformation determined by our approach and DFT is negligible (less than about 0.5Å), which underpins the validity of our approach. Furthermore, the median time-to-target metric can be reduced by a factor of five compared to SA. Additionally, we demonstrate a simulation experiment by MindQuantum using quantum approximate optimization algorithm (QAOA) to reach optimal results. These results indicate that quantum-inspired algorithms can be applied to solve practical problems even before quantum hardware becomes mature. The objective function of MU is defined as the sum of all internal distances between atoms in the molecule, which is a high-order unconstrained binary optimization (HUBO) problem. The degree of freedom of variables is discretized and encoded with binary variables by the phase encoding method. We employ the quantum-inspired simulated bifurcation algorithm for optimization. The public QM9 dataset is generated by DFT. The simulation experiment of quantum computation is implemented by MindQuantum using QAOA.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.