Abstract

This paper presents an effective combination of various modeling and numerical techniques for enabling fast large-scale first-principle electronic density calculations. A real-space mesh technique framework is used to discretized the DFT/Kohn-Sham equations in the entire 3D atomistic system, then a mode decomposition approach is proposed to reduce the size and the bandwidth of the obtained system matrix. The electron density is computed by performing the contour integration of the mode Green’s function along the complex energy plane using a O(N) diagonal banded system solver. Finally, we present and discuss the performance results of the proposed ab-initio atomistic-based electronic density calculations with application to Carbon nanotube (CNT).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.