Abstract
High-voltage direct current (HVDC) grids using modular multilevel converters (M2Cs) have strongly been considered for the integration of distant renewable energy sources and also as a backbone to the existing ac-grids. The dynamic performance of the M2C is of particular interest in these grids. For electromagnetic transient (EMT) programs, modeling of HVDC-grids using detailed M2C models is unrealistic, as it requires extremely high computational effort and simulation time. In this paper an HVDC-grid test system is developed using a continuous simulation model of the M2C. The model is also capable of describing the blocking events of the M2C. Using time-domain simulations in PSCAD/EMTDC, the dynamic performance of the M2C in HVDC-grids under fault conditions is investigated. Simulation results reveal that the continuous M2C model can efficiently be used to study the dynamic performance of the M2C in HVDC-grids with high computational speed, under different fault conditions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.