Abstract

Detailed finite element (FE) models with 3-D solid elements are typically used to simulate impact behaviors of reinforced concrete (RC) beams and columns. However, the method usually requires a substantial amount of time and effort to model concrete and reinforcement and conduct nonlinear contact-impact analyses. Also, the accuracy of the method cannot be guaranteed due to the limitations in concrete material models implemented in general-purpose FE codes. In this paper, an efficient modeling method is proposed to capture both flexural and shear behaviors of RC beams and columns under low-velocity impact loading. A macroelement-based contact model was developed in the proposed method to capture interaction behaviors between impacting objects and RC members. In the contact model, a compression-only spring with an initial gap behavior was used to account for the stiffness and the kinematic response of an impacting object, and a combination of an elastic spring and a viscous damper in parallel was employed to simulate the contact stiffness and damping. By properly approximating the strain-rate effects, traditional fiber-section elements were demonstrated to be capable of predicting impact-induced flexural failures for RC members. On this basis, a general approach for both flexural- and shear-critical RC columns under impact loading was presented with the inclusion of additional shear springs in the fiber-section elements. Nearly fifty impact tests on RC beams and columns reported in the literature were employed to validate the proposed modeling method. Comparisons between the experimental and numerical results indicate that failure modes of the impacted members can be identified explicitly by the use of the proposed modeling method. Also, reasonable agreements were achieved for the impact forces and the impact-induced responses obtained from the impact tests and the analyses. The proposed method can be readily implemented without coding in any FE software as long as traditional fiber-section elements, and discrete macroelements are available. This feature would offer an advantage for the applications of the proposed method such as when assessing the structural response and vulnerability of a bridge structure subjected to vessel and vehicle collisions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.