Abstract

In this paper, we examined mixing of various two-fluid flows in a silicon/glass microchannel based on the competition of dominant forces in a flow field, namely viscous/elastic, viscous/viscous and viscous/inertial. Experiments were performed over a range of Deborah and Reynolds numbers (0.36 < De < 278, 0.005 < Re < 24.2). Fluorescent dye and microshperes were used to characterize the flow kinematics. Employing abrupt convergent/divergent channel geometry, we achieved efficient mixing of two-dissimilar viscoelastic fluids at very low Reynolds number. Enhanced mixing was achieved through elastically induced flow instability at negligible diffusion and inertial effects (i.e. enormous Peclet and Elasticity numbers). This viscoelastic mixing was achieved over a short effective mixing length and relatively fast flow velocities.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.