Abstract

Minimum spanning tree problem is a very important problem in VLSI CAD. Given n points in a plane, a minimum spanning tree is a set of edges which connects all the points and has a minimum total length. A naive approach enumerates edges on all pairs of points and takes at least ω(n2) time. More efficient approaches find a minimum spanning tree only among edges in the Delaunay triangulation of the points. However, Delaunay triangulation is not well defined in rectilinear distance. In this paper, we first establish a framework for minimum spanning tree construction which is based on a general concept of spanning graphs. A spanning graph is a natural definition and not necessarily a Delaunay triangulation. Based on this framework, we then design an O(n log n) sweep-line algorithm to construct a rectilinear minimum spanning tree without using Delaunay triangulation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.