Abstract

For a number of reasons, even the best query optimizers can very often produce sub-optimal query execution plans, leading to a significant degradation of performance. This is especially true in databases used for complex decision support queries and/or object-relational databases. In this paper, we describe an algorithm that detects sub-optimality of a query execution plan during query execution and attempts to correct the problem. The basic idea is to collect statistics at key points during the execution of a complex query. These statistics are then used to optimize the execution of the query, either by improving the resource allocation for that query, or by changing the execution plan for the remainder of the query. To ensure that this does not significantly slow down the normal execution of a query, the Query Optimizer carefully chooses what statistics to collect, when to collect them, and the circumstances under which to re-optimize the query. We describe an implementation of this algorithm in the Paradise Database System, and we report on performance studies, which indicate that this can result in significant improvements in the performance of complex queries.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.