Abstract

This paper presents a 2.45GHz microwave cavity resonator with the novel dual function of both sensitive dielectric characterisation and directed, volumetric heating of fluids in a microfluidic chip. This method is shown to have a higher efficiency (>90% for methanol) than previous microfluidic microwave heating methods and can regulate heating using real time cavity characterisation. The system is simple, robust and does not require on-chip integration of microwave waveguide structures. Furthermore, this method can be combined with miniaturised resonators (such as split rings) for localisation of heating within a microfluidic chip.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.